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Abstract
We study the electron transport through a graphene nanoribbon–superconductor junction. Both
zigzag and armchair edge graphene nanoribbons are considered, and the effects of the magnetic
field and disorder on the transport property are investigated. By using the tight-binding model
and the non-equilibrium Green’s function method, the expressions of the current, conductance,
normal tunneling coefficient and Andreev reflection coefficient are obtained. For a clean system
and at zero magnetic field, the linear conductance increases approximately in a linear fashion
with the on-site energy. In the presence of a magnetic field and a moderate disorder, the linear
conductance exhibits plateau structures for both armchair and zigzag edges. The plateau values
increase with the width of the graphene ribbon. With a wide sample width, a saturated plateau
value of |ν|e2/h emerges at the filling factor ν. For a small filling factor, the conductance can
reach the saturated value at a small width, but for a high filling factor it requires to have a quite
wide sample width to reach the saturated value. In particular, the Andreev reflection coefficient
is always at 0.5 after reaching the saturated value, independent of any system parameters. In
addition, we also consider the finite bias case, in which the Andreev reflection coefficient and
normal tunneling coefficient are studied.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent experimental realization of graphene [1, 2], a single
layer of carbon atoms arranged in a honeycomb lattice, has
generated a great deal of attention in the condensed matter
community [3, 4]. Graphene has an unique band structure
with a linear dispersion relation of the low-lying excitations,
which leads to many peculiar properties [3, 4], such as its
quasi-particles obeying the Dirac-like equation and having
relativistic-like behavior with zero rest mass and the Hall
plateaus having the half-integer values g(n + 1/2)e2/h with
the degeneracy g = 4. For the neutral graphene, its Fermi
level passes through the Dirac points, the six corners of the
hexagonal first Brillouin zone. By varying the gate voltage, the
charge carriers of graphene can be easily tuned experimentally.
Then the Fermi level can be above or below the Dirac points.

Very recently, some works have begun to investigate
the transport behavior of the graphene–superconductor
junctions [5–17]. While a metal coupled to a superconductor,

the Andreev reflection occurs in the interface between the
metal and superconductor [18], in which the interface reflects
an electron incident from the normal metal side as a hole and a
Cooper pair is created in the superconductor. For a bias below
the superconductor gap, the Andreev reflection determines
the conductance of the metal–superconductor junction since
the normal tunneling cannot occur. In the usual metal–
superconductor junction, the Andreev reflected hole retraces
the path of the incident electron, so this Andreev reflection
is also called Andreev retroreflection. But for the graphene–
superconductor junction, Beenakker recently found that a new
kind of reflection (specular Andreev reflection) occurs while
the incident electron and reflected hole are at the conduction
and valence bands, respectively [5]. Afterward, many
papers have studied the graphene and superconductor hybrid
system, including the graphene-based normal–superconductor
(N–S) [5–7, 14], S–N–S [8–10], S–insulator–S [13], S–
ferromagnet–S [11], etc. Several other effects due to
the coupling of graphene and superconductor, such as the
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Figure 1. (a) and (b) are the schematic diagrams for the zigzag and armchair edge graphene nanoribbon–superconductor junctions,
respectively.

Josephson effect [8, 9, 13] and multiple Andreev reflection
processes [15], have been theoretically analyzed. On the
experimental side, good contacts between the superconductor
electrodes and graphene have been realized [19, 20] and the
Josephson current through an S–graphene–S junction has been
measured. A finite supercurrent was observed at zero charge
density.

In this paper, we carry out a theoretical study of
the transport characteristics of a graphene nanoribbon–
superconductor junction. There are four new aspects beyond
the previous studies: (i) we study the system consisting of
a graphene nanoribbon with a finite width coupled to the
superconductor electrode. The previous theoretical papers only
consider the infinite-width graphene–superconductor junction
or a graphene strip between two superconductor leads with
the strip width much larger than the strip length. On
the experimental side, the graphene nanoribbon has been
successfully fabricated and the width of the nanoribbon can
be of the order of ten or sub-ten nanometers [21]. (ii) In
our model, the graphene nanoribbon is directly coupled to
the superconductor electrode and the incident electrons from
the graphene are allowed to enter into the superconductor
electrode as the Cooper pairs. In the previous papers, those
authors only considered a pair potential in the graphene
induced by depositing of a superconductor electrode on top
of the graphene sheet. (iii) We consider a perpendicular
magnetic field applied to the graphene, as was done in a recent
experiment [19]. On the superconductor side, the magnetic
field vanishes due to the Meissner effect. (iv) The effect of
disorder on the transport property is investigated since, in a
real graphene sample, the disorder is always there to a certain
degree. In fact, in the previous studies, the effects of disorder
and magnetic field are thus far neglected.

By using the tight-binding model and the non-equilibrium
Green function method, the current and Andreev reflection
coefficient are obtained. Both zigzag edge and armchair
edge graphene nanoribbons are considered. For the zigzag
edge and at a zero magnetic field, the linear conductance
exhibits step structures for the narrow graphene ribbon. With
a magnetic field, the conductance depends strongly on the
system parameters. In the presence of disorder, the linear
conductance shows plateaus at a high magnetic field. On the
other hand, for the armchair edge, a zero conductance region
emerges because of the existence of an energy gap in the
graphene nanoribbon. This zero conductance is robust against
disorder. In addition, we also consider a finite bias case, in

which the Andreev reflection coefficient and normal tunneling
coefficient are investigated.

The rest of this paper is organized as follows. In section 2,
the model for graphene nanoribbon–superconductor junction
is presented and the formalisms for calculating the current and
the Andreev reflection coefficient are derived. In sections 3
and 4, we study the linear conductance and the transport with a
finite bias, respectively. Finally, a brief summary is presented
in section 5.

2. Model and formalism

We consider the system consisting of a graphene nanoribbon
coupled to a superconductor lead (as shown in figure 1) with
the Hamiltonian

H = HG + HS + HC, (1)

where HG, HS and HC are the Hamiltonians of the graphene
region, superconductor lead and coupling of the graphene and
superconductor lead, respectively. For a semi-infinite graphene
nanoribbon, HG in the tight-binding representation is of the
form [22, 23]

HG =
∑

i,σ

εi a
†
iσ aiσ −

∑

〈i j〉,σ
teiφi j a†

iσ a jσ , (2)

where aiσ and a†
iσ are the annihilation and creation operators

at the discrete site i , and εi is the on-site energy which can be
controlled by the gate voltage in an experiment. Two kinds of
edges, zigzag and armchair, are considered (see figures 1(a)
and (b)). The graphene ribbon is divided into two regions.
The left side of the semi-infinite region is without disorder and
εi = EL there. The disorder exists only in the center region of
the graphene–nanoribbon (see the box with the dotted line in
figure 1). Here we consider the on-site disorder caused by the
nonmagnetic impurities or by the random potential difference
of the substrate. Due to the disorder, the on-site energy εi =
EL + wi , where wi is the on-site disorder energy and wi is
uniformly distributed in the range [−W/2, W/2] with W being
the disorder strength. The size of the disordered region is
described by the width N and length L. In figures 1(a) and (b),
N = 3, L = 4 and N = 4, L = 2, respectively. The second
term in equation (2) is the nearest-neighbor hopping. When
the graphene ribbon is under a uniform perpendicular magnetic
field B , a phase φi j is added in the hopping elements, and
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φi j = ∫ j
i

�A · d�l/φ0 with the vector potential �A = (−By, 0, 0)

and φ0 = h̄/e.
Experimentally, it is possible to have the superconductor

electrode in good contact with the graphene [19]. The electrons
from the graphene can easily enter into the superconductor
electrode as the Cooper pairs or vice versa. So we consider
that the graphene nanoribbon is directly coupled to the
superconductor electrode. The superconductor electrode is
described by a continuum model and it does not have the
honeycomb structure of the graphene. Then the Hamiltonian
HS is

HS =
∑

k,σ

εkb†
kσ bkσ +

∑

k

(�b†
k↑b†

−k↓ + �b−k↓bk↑), (3)

where bkσ and b†
kσ are the annihilation and creation operators

in the superconductor lead with the momentum k = (kx, ky).
Here we consider the s-wave superconductor and � is the
superconductor gap. The superconductor region is without the
magnetic field due to the Meissner effect or that the magnetic
field is only added in the graphene region. The Hamiltonian
HC of the coupling between the superconductor lead and the
graphene nanoribbon is

HC =
∑

i,σ

tca†
iσ bσ (yi) + h.c. (4)

Here only the surface carbon atoms couple to the superconduc-
tor lead and yi is the vertical position of the carbon atom i .
bσ (y) is the annihilation operators at the position (0, y) of real
space and

bσ (y) =
∑

kx ,ky

eiky ybkσ . (5)

The current flowing through the graphene nanoribbon–
superconductor junction can be calculated from the evolution
of the total number operator for electrons in the left graphene–
nanoribbon lead [24]:

I = −e

〈
d

dt

∑

i∈L ,σ

a†
iσ aiσ

〉
= e

h̄

∑

i∈L , j∈C

∫
dω

2π

× {ti j G
<
j i,11 − ti j G

<
i j,22 − t j i G

<
i j,11 + t j i G

<
j i,22}, (6)

where ti j = teiφi j . Here i ∈ L and j ∈ C represent that the site
index i and j are in the left graphene lead and center region.
G<

i j(ω) is the matrix Green function in Nambu representation,
and it is the Fourier transformation of G<

i j(t):

G<
i j(t) = i

( 〈a†
j↑(0)ai↑(t)〉 〈a j↓(0)ai↑(t)〉

〈a†
j↑(0)a†

i↓(t)〉 〈a j↓(0)a†
i↓(t)〉

)
. (7)

By using the Dyson equation, the current expression in
equation (6) can be rewritten as

I = e

h

∫
dω Tr

(
1 0
0 −1

) ⊗
INc{(Σa

L − Σr
L)G<

+ Σ<
L (Gr − Ga)}. (8)

Here Gr,a,<(ω) are the 2Nc × 2Nc matrix Green’s functions
in the center region with Nc being the number of sites in the
center region. The retarded and advanced Green’s functions

Gr,a are defined in the standard way [25]. INc is the Nc × Nc
unit matrix. Σr,a,<

L (ω) are the retarded, advanced and lesser
self-energies of coupling to the left graphene lead, and they are

Σr
L,i j =

∑

n∈L ,m∈L

(
tingr

nm,11tmj 0
0 t∗

ingr
nm,22t∗

mj

)
(9)

Σa
L = Σr†

L (10)

Σ<
L =

(
i f↑(ω)ΓL↑(ω) 0
0 i f↓(ω)ΓL↓(ω)

)
, (11)

where f↑(ω) = f (ω − eV ) and f↓(ω) = f (ω + eV ), with V
being the bias voltage and f (ω) being the Fermi distribution
function, and ΓL↑(ω) ≡ i(Σr

L − Σa
L)11 and ΓL↓(ω) ≡

i(Σr
L − Σa

L)22. gr
nm(ω) in equation (9) is the surface Green’s

function of the semi-infinite graphene nanoribbon, which can
be numerically calculated [26]. With the aid of the self-energy
functions in equations (9)–(11), the current I is finally reduced
to

I = I↑ + I↓, (12)

I↑ = ie

h

∫
dω Tr ΓL↑{G< + f↑(Gr − Ga)}11, (13)

I↓ = − ie

h

∫
dω Tr ΓL↓{G< + f↓(Gr − Ga)}22. (14)

As shown in the appendix, the self-energies Σr,a,<
R of coupling

to the superconductor lead can be obtained by Σr
R =

−(i/2)ΓR, Σa
R = (i/2)ΓR and Σ<

R = i f (ω)ΓR. Then by
using the Keldysh equation G< = GrΣ<Ga , Gr − Ga =
Gr (Σr −Σa)Ga and the self-energies Σr,a,< = Σr,a,<

L +Σr,a,<
R ,

the currents I↑ and I↓ can be rewritten as

I↑ = e

h

∫
dω Tr{ΓL↑[GrΓRGa]11( f↑ − f )

+ ΓL↑Gr
12ΓL↓Ga

21( f↑ − f↓)}, (15)

I↓ = − e

h

∫
dω Tr{ΓL↓[GrΓRGa]22( f↓ − f )

+ ΓL↓Gr
21ΓL↑Ga

12( f↓ − f↑)}. (16)

Here Tr{ΓL↑[GrΓRGa]11} ≡ T↑(ω) and Tr{ΓL↓[GrΓRGa]22} ≡
T↓(ω) are the normal tunneling coefficients for the incident
spin-up electron and spin-down hole with the energy ω, and
Tr{ΓL↑Gr

12ΓL↓Ga
21} ≡ TA↑(ω) and Tr{ΓL↓Gr

21ΓL↑Ga
12} ≡

TA↓(ω) are the Andreev reflection coefficients. Since the Pauli
matrices σ̂x,y,z commute with the Hamiltonian H , the normal
transmission coefficients T↑(ω) = T↓(−ω) ≡ T (ω) and the
Andreev reflection coefficients TA↑(ω) = TA↓(−ω) ≡ TA(ω).

In the following, we need to calculate the Green’s
functions Gr and Ga of the center region. Since the self-
energy Σr has been obtained before and by using the Dyson’s
equation, the Green’s function Gr is simply of the form

Gr (ω) = 1/(ωI2Nc − Hcenter − Σr ), (17)

and in addition Ga = Gr†, where Hcenter is the Hamiltonian of
the center region in the Nambu representation.

In the numerical calculations, we take the hopping energy
t = tc = 2.75 eV and the nearest-neighbor carbon–carbon
distance a = 0.142 nm as in a real graphene sample [3, 4].

3



J. Phys.: Condens. Matter 21 (2009) 344204 Q-F Sun and X C Xie

Figure 2. The linear conductance G versus the energy EL for
different width N at the clean system with W = 0. The panels (a)
and (b) are for the magnetic field strength φ = 0 and φ = 0.007,
respectively.

The superconductor gap � is set to � = t/2750 = 1 meV and
the Fermi wavevector kF = 1 Å

−1
. The temperature T is set

to zero since T can be as low as 1 K in a real experiment and
thus kBT is much smaller than all other relevant energies, such
as t and �. The magnetic field is expressed in terms of φ with
φ ≡ (3

√
3/4)a2 B/φ0 and (3

√
3/2)a2 B is the magnetic flux in

the honeycomb lattice. In the presence of disorder, the curves
are averaged over up to 1000 random configurations.

3. The linear conductance

In this section, we consider the small bias limit and investigate
the linear conductance. When the bias V is smaller than
the gap �, the normal tunneling processes cannot occur and
T (ω) = 0 for |ω| < �. Then only Andreev reflection
processes contribute to the current and the linear conductance
G = limV →0 dI/dV = (4e2/h)TA(0) at zero temperature.
In the following, we carry out numerical studies of graphene
nanoribbons with both zigzag and armchair edges.

3.1. The zigzag edge case

First, we study the clean graphene nanoribbons with the
disorder strength W = 0. Figure 2 shows the linear
conductance G versus the on-site energy EL (i.e. the energy
at the Dirac point) with and without the magnetic field.
The energy EL can be controlled by the gate voltage in an
experiment. For EL > 0, the charge carrier of graphene is
hole-like, and it is electron-like for EL < 0. In the absence of
a magnetic field (φ = 0), the conductance G is approximately
linear with |EL| due to the linear increase of the carrier
density. For a narrow graphene nanoribbon (e.g. N = 40),
the conductance G clearly shows the step structures because of

Figure 3. The conductance G versus EL for the different disorder
strengths W , with the parameters L = 16, N = 60 and φ = 0.007.

the sub-bands from the finite width. When a sub-band passes
through the Fermi energy EF (EF = 0), a step appears. For
N = 40, the width of the graphene ribbon is (3N − 1)a ≈
17 nm. The graphene ribbon with this width has been realized
in a recent experiment [21]. On the other hand, for a wide
graphene nanoribbon (e.g. N = 70), the step structures fade
away due to the reduction of the interval of the sub-bands.

While in the presence of a strong magnetic field, the
conductance G does not show a clear pattern and depends
strongly on EL and the width N (see figure 2(b)). Raising
the disorder from zero, the conductance G in the small-
value region is increased while G in the large-value region is
decreased (as shown in figure 3). Meanwhile some plateaus
emerge at moderate disorder strength, e.g. W = 2.3 These
plateaus originate from the mixture of the electron and hole
edge states, which will be discussed in detail in the last
paragraph in this section.

Figure 4 shows the linear conductance G versus the on-site
energy EL with a moderate disorder strength W . G exhibits the
plateaus with or without a magnetic field. In the absence of the
magnetic field, the conductance G is similar to the disorder-
free case (compare figures 2(a) and 4(a)) and the plateaus of
the conductance are equal-spaced in energy. These plateaus
are from the discrete sub-bands. In a graphene sample, due to
the linear dispersion relation, the sub-bands are equal-spaced
and so are the plateaus. For a wider graphene ribbon, the sub-
bands are closer, then the widths of the plateaus are smaller,
so that the plateaus are faded at large width (e.g. N = 70).
On the other hand, in the presence of a magnetic field, the
width of conductance plateaus are independent of the width
N of the graphene ribbon, and the plateaus are always clear
regardless of N . Now the plateaus are equal-spaced at the
scale of E2

L and the values of the conductance plateaus are
determined by the filling factors ν of the Landau level and the
width N of the graphene ribbon. The wider N is, the larger the

3 In a recent paper [27], it shows that the Anderson localization occurs in the
graphene systems and the conductance is very small at the disorder strength
W ∼ t . But in this work we only consider a graphene nanoribbon with small
sizes, so the Anderson localization may not appear and the conductance can be
large at the disorder strength W ∼ t .
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Figure 4. The conductance G versus the energy EL for different
width N at the moderate disorder strength W = 2t and L = 16.
Panels (a) and (b) are for the magnetic field strength φ = 0 and
φ = 0.007, respectively.

conductance value is. But the conductance reaches a saturated
value |ν|e2/h at large N (see figure 5(b)). Figure 5 shows the
conductance G versus the width N of the graphene ribbon. For
φ = 0, G increases approximately in a linear way with N (see
figure 5(a)). But at high magnetic field G has a saturated value
(see figure 5(b)). For a small filling factor (e.g. EL = 0.1t with
ν = 2), G reaches the saturated value with small N (N = 40).
For a large filling factor, G reaches the saturated value only
with quite a large N .

With the aid of the edge states, these phenomena can be
well explained. With a high magnetic field, the edge states that
carry charges are formed. In the interface of the graphene and
the superconductor, the edge states extend from one boundary
to the other along the interface, in which the Andreev reflection
occurs. So the wider the graphene ribbon is, the larger the
probability is for the Andreev reflection. In the large N

limit, the electron and hole edge states are well mixed. Thus,
the Andreev reflection coefficient is 0.5, independent of any
system parameters, such as the width N , the on-site energy
EL, the magnetic field strength φ and the disorder strength W .
Then the conductance G = (2e2/h)2TA(0) = |μ|e2/h.

3.2. The armchair edge case

In this section, the linear conductance G in the armchair
edge case is numerically investigated. Figure 6 shows the
conductance G versus the on-site energy EL. Without a
magnetic field (φ = 0), G increases linearly with the energy
|EL| in the absence of disorder (see figure 6(a)). The disorder
evidently enhances the conductance G in the small |EL| region
(see figure 6(b)). Thus G departs from the linear relation with
|EL|. In contrast with the zigzag edge case, it has two obvious
characteristics: (i) there is a zero conductance G region near
EL = 0 for N = 3m or 3m + 1, because an energy gap
emerges at the armchair edge graphene ribbon causing the
Andreev reflection to vanish. This zero-conductance G region
still exists in the presence of disorder (e.g. W = 2). (ii) The
step structures from the sub-bands are not apparent, although
the width of the graphene ribbon is

√
3Na ≈ 17 nm for

N = 70. For the zigzag edge case with this width the step
structures are clearly seen (see figures 2(a) and 4(a)).

With a magnetic field, the Landau levels are formed and
the conductance G departs completely from the linear relation
with |EL|. For the clean system (W = 0), the conductance is
quite small at the smallest filling factor |ν| = 2 and exhibits
some peaks at the higher filling factors |ν| = 6, 10, 14,
etc (see figure 6(c)). On the other hand, in the presence of
disorder (W = 2), the conductance G shows plateaus and the
plateau values are |ν|e2/h in the large width N limit. This
is because of the mixture of the electron and hole edge states
and the Andreev reflection coefficient is 0.5 at large N . The
characteristics of the plateaus at the moderate disorder strength
are similar to that of the zigzag edge graphene ribbon.

Figure 7 shows the conductance G versus the width N
of the graphene ribbon for a moderate disorder strength. At
zero magnetic field, the conductance G increases linearly with
the width N as it appears in a classical system. But at a high
magnetic field, although the conductance G still increases with
the width, a saturation value |ν|e2/h appears, the same as in
the zigzag edge case.

Figure 5. The conductance G versus the width N of the graphene nanoribbon with EL = 0.1t (solid curve), 0.2t (dashed curve) and 0.25t
(dotted curve). Panels (a) and (b) are for the magnetic field strengths φ = 0 and φ = 0.007, respectively. The other parameters are W = 2 and
L = 16.
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Figure 6. The conductance G versus the energy EL for different widths N . The parameters are L = 12, the disorder strength W = 0 (in (a)
and (c)) and W = 2t (in (b) and (d)) and the magnetic field strength φ = 0 (in (a) and (b)) and φ = 0.007 (in (c) and (d)).

Figure 7. The conductance G versus the width N of the graphene
nanoribbon for the different energies EL. Panels (a) and (b) are for
the magnetic field strengths φ = 0 and φ = 0.007, respectively. The
other parameters are W = 2t and L = 12.

4. The finite bias case

In this section, the case with a finite bias is investigated. With
the bias V > �, the normal tunneling processes also occur and
the current I is

I = 2e

h

∫
dω {T (ω)( f↑ − f ) + TA(ω)( f↑ − f↓)}. (18)

Following this, we numerically study the normal tunneling
coefficient T (ω) and Andreev reflection coefficient TA(ω) for
the zigzag edge graphene ribbon. Figure 8 shows T (ω) and
TA(ω) versus the energy ω of the incident electron for the
clean system. The normal tunneling coefficient T (ω) is zero
when |ω| < � because of the superconductor gap, and T (ω)

is near 1 at |ω| > � since there is no barrier at the interface
of the superconductor and graphene. Next, we focus on the
Andreev reflection coefficient TA(ω). For zero magnetic field
with φ = 0, TA(ω) is almost zero for |ω| > |EL| (see
figure 8(a)), implying that the specular Andreev reflection is
very weak at φ = 0. But the usual Andreev retroreflection
still occurs and TA(ω) is quite large for |ω| < |EL|. With
a magnetic field (see figure 8(c)), both kinds of Andreev
reflections occur simultaneously and TA(ω) is always finite
regardless of whether |ω| < |EL| or |ω| > |EL|. TA(ω) has
a peak at ω = ±� and quickly decays for |ω| > �, which is
similar to a normal metal–superconductor junction [28].

Finally, the effect of the disorder on the normal tunneling
coefficient T (ω) and Andreev reflection coefficient TA(ω) is
studied. The normal tunneling coefficient T (ω) is almost
unaffected by a moderate disorder strength W , T (ω) is still
zero for |ω| < � and near 1 for |ω| > � (see figures 9(b)
and (d)). However, the Andreev reflection coefficient TA(ω) is
evidently affected by the disorder (see figures 9(a) and (c)).
Both specular Andreev reflection and the usual Andreev
retroreflection occur and TA(ω) is close to 0.5 in the whole
range of |ω| < �.

5. Conclusion

In summary, by using the non-equilibrium Green’s func-
tion method, the electron transport through the graphene
nanoribbon–superconductor junction is investigated. Both

6
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Figure 8. The normal tunneling coefficient T (ω) (in (b) and (d)) and Andreev reflection coefficient TA(ω) (in (a) and (c)) versus ω for
different on-site energy EL. The other parameters are N = 50, W = 0 and the magnetic field strength φ = 0 (in (a) and (b)) and φ = 0.007
(in (c) and (d)).

Figure 9. The normal tunneling coefficient T (ω) (in (b) and (d)) and Andreev reflection coefficient TA(ω) (in (a) and (c)) versus ω for
different on-site energy EL. The other parameters are N = 50, L = 16, W = 2t and the magnetic field strength φ = 0 (in (a) and (b)) and
φ = 0.007 (in (c) and (d)).

zigzag and armchair edge graphene nanoribbons are consid-
ered. The effects of a magnetic field and disorder on the trans-
port property are discussed. In the clean system and without a
magnetic field, the linear conductance increases approximately
in a linear fashion with the on-site energy for the case with the
armchair edge or the wide zigzag edge. In the presence of a
magnetic field and moderate disorder, the linear conductance

exhibits the plateau structures for both armchair and zigzag
edge nanoribbons. The plateau value increases with the width
of the graphene ribbon, but reaches a saturation at |ν|e2/h (ν
is the filling factor) for the wide graphene ribbon. In addition,
the case with a finite bias is studied and the dependence of the
Andreev reflection and normal tunneling coefficients on the en-
ergy of the incident electron are discussed.
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Appendix

In this appendix, we derive the surface Green’s function gr
S

of the superconductor lead and the self-energies Σr,a,<
R of

coupling to the superconductor lead. The definition of the
surface Green’s function gr

S is

gr
S(y, y ′, t) = −iθ(t)

×
( 〈{b↑(y, t), b†

↑(y ′, 0)}〉 〈{b↑(y, t), b↓(y ′, 0)}〉
〈{b†

↓(y, t), b†
↑(y ′, 0)}〉 〈{b†

↓(y, t), b↓(y ′, 0)}〉

)

and gr
S(y, y ′, ω) is the Fourier transformation of gr

S(y, y ′, t),
where y and y ′ are the real-space positions on the surface of
a half-infinite superconductor lead. Applying the equation of
motion, gr

S(y, y ′, ω) can be written as

gr
S(y, y ′, ω) =

∑

k

1

ω2+ − ε2
k − �2

(
ω+ + εk �

� ω+ − εk

)

× eiky (y−y′),

where ω+ = ω + i0+. Next, we calculate the sum,∑
k F(k)eiky (y−y′) with F(k) = (ω+ ± εk)/(ω

2+ − ε2
k − �2)

or F(k) = �/(ω2+ − ε2
k − �2):

∑

k

F(k)eiky (y−y′) =
∫ π

−π

dθ

∫
dk kρkeik(y−y′) sin θ F(k)

=
∫

dεk J0(k(y − y ′))ρ(εk)F(k).

where J0 is the Bessel function of the first kind, ρk is the
density of state in the k space and ρ(εk) = 2πkρk(dk/dεk)

is the density of state in the energy space. In the above steps,
we have assumed the s-wave superconductor so that εk only
depends on k = |k|. In the following, we assume that the
density of state ρ(εk) = ρ is independent of the energy εk

and J0(k(y − y ′)) only depends on the Fermi wavevector
kF [25]. These assumptions are reasonable because the main
contribution to the transport behavior is these electrons with
their energies near the Fermi energy. Then gr

S(y, y ′, ω) reduces
to

gr
S(y, y ′, ω) = J0(kF(y − y ′))ρ

×
∫

dεk
1

ω2+ − ε2
k − �2

(
ω+ + εk �

� ω+ − εk

)
.

By using the theorem of residue, the integration
∫

dεk in the
above equation can be obtained analytically [25], and the
surface Green’s function gr

S(y, y ′, ω) changes into

gr
S(y, y ′, ω) = −iπρ J0(kF(y − y ′))β(ω)

(
1 �/ω

�/ω 1

)
,

where β(ω) = |ω|/√ω2 − �2 while |ω| > � and β(ω) =
ω/(i

√
�2 − ω2) while |ω| < �. After solving the surface

Green’s function gr
S(y, y ′, ω), the self-energies Σr,a,<

R are
obtained straightforwardly:

Σr
R,i j(ω) = tcgr

S(yi , y j , ω)t∗
c

= −iπρ|tc|2 J0(kF(yi − y j))β(ω)

(
1 �/ω

�/ω 1

)

≡ −(i/2)ΓR,i j(ω),

Σa
R(ω) = (i/2)ΓR(ω) and Σ<

R (ω) = i f (ω)ΓR(ω).
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